skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mockler, Todd C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the use of deep convolutional neural networks (CNNs) trained on overhead imagery of biomass sorghum to ascertain the relationship between single nucleotide polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control. We consider both CNNs trained explicitly on the classification task of predicting whether an image shows a plant with a reference or alternate version of various SNPs as well as CNNs trained to create data-driven features based on learning features so that images from the same plot are more similar than images from different plots, and then using the features this network learns for genetic marker classification. We characterize how efficient both approaches are at predicting the presence or absence of a genetic markers, and visualize what parts of the images are most important for those predictions. We find that the data-driven approaches give somewhat higher prediction performance, but have visualizations that are harder to interpret; and we give suggestions of potential future machine learning research and discuss the possibilities of using this approach to uncover unknown genotype × phenotype relationships. 
    more » « less
  2. null (Ed.)
    Like animals, plants have internal biological clocks that allow them to adapt to daily and yearly changes, such as day-night cycles or seasons turning. Unlike animals, however, plants cannot move when their environment becomes different, so they need to be able to weather these changes by adjusting which genes they switch on and off. To do this, plants keep track of how long days are using external cues such as light or temperature. One of the effects of climate change is that these cues become less reliable, making it harder for plants to adapt to their environment and survive. This is a potential problem for crop species, like Brassica rapa . This plant has many edible forms, including Chinese cabbage, oilseed, pak choi, and turnip. It is also a close relative of the well-studied model plant, Arabidopsis . Since evolving away from Arabidopsis , the genome of B. rapa tripled, meaning it has one, two, or three copies of each gene. This has allowed the extra gene copies to mutate and adapt to different purposes. The question is, what impact has this genome expansion had on the plant's biological clock? One way to find out is to perform RNA-sequencing experiments, which record the genes a plant is using at any one time. Here, Greenham, Sartor et al. report the results of a series of RNA-sequencing experiments performed every two hours across two days. Plants were first exposed to light-dark or temperature cycles and then samples were taken when the plants were in constant light and temperature. This revealed which genes B. rapa turned on and off in response to signals from the internal biological clock. It turns out that the biological clock of B. rapa controls close to three quarters of its genes. These genes showed distinct phases, increasing or decreasing in regular patterns. But the different copies of duplicated and triplicated genes did not necessarily all behave in the same way. Many of the copies had different rhythms, and some increased and decreased in patterns totally opposite to their counterparts. Not only did the daily patterns differ, but responses to stressors like drought were also altered. Comparing these patterns to the patterns seen in Arabidopsis revealed that often, one B. rapa gene behaved just like its Arabidopsis equivalent, while its copies had evolved new behaviors. The different behaviors of the copies of each gene in B. rapa relative to its biological clock allow this plant to grow in different environments with varying temperatures and day lengths. Understanding how these adaptations work opens new avenues of research into how plants detect and respond to environmental signals. This could help to guide future work into targeting genes to improve crop growth and stress resilience. 
    more » « less
  3. SUMMARY The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions ofBrachypodium distachyonunder drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21‐0, the reference line forB. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated withB. distachyonresponses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone. 
    more » « less
  4. Abstract Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution. 
    more » « less